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Plan for this week

Plan for this Lecture:

• Sequence data: Time series, audio, text
• Language Models: N-Gram Models
• Adding memory to NNs: Recurrent NNs

Wednesday's Lecture:

• RNNs, GRUs, LSTMs
• Adding Atttention: BERT, GPT



Recall that a single neuron does logistic regression using the dot product of a vector of 
weights and a vector of input values, sends the sum through a non-linear activation 
function f, and outputs the result to the next layer:

Recall: Feedforward Neural Networks
(With a little bit of Linear Algebra in Python thrown in......



This is nearly trivial to implement in Python

(With a little bit of Linear Algebra in Python thrown in......

Recall: Feedforward Neural Networks



Feed-Forward Layer just applies this dot-product-then-activation-function in parallel, 
using matrix multiplication, and activation functions applied elementwise:

(With a little bit of Linear Algebra thrown in......

Recall: Feedforward Neural Networks

All the matrices are parameters 
that need to be learned during 
training. 



If you know a little linear algebra in Python, this is again trivial to implement:

Sequence Data: A problem for FF NNs
(With a little bit of Linear Algebra thrown in......  )



A Feed-Forward Neural Network learns a function from vectors to vectors:

Input vectors may be one-hot word vectors, pixel densities, etc. etc.

Note: The order of the inputs does not matter! 

Sequence Data: A problem for FF NNs



HOWEVER, many kinds of data are inherently sequential, often as a time series:

Words in a sentence:           The matters order
Order the matters
Matters order the
The order matters

Audio: 

Stock prices:

Sequence Data: A problem for FF NNs

We will first consider a simple way of dealing with sequence information, using N-
Grams model in NLP; then we shall consider a more essential fix to the notion of a 
layer in a network. 

Population:



Image source: medium.com

NLP Task
Language    

≈
Data Set

A Language Model is a simplified representation of a language 
which facilitates an NLP task, where
• A language (potentially infinite) is approximated by a (finite) 

data set; and
• The model is a set of (simplified) assumptions about the 

language, embodied by the algorithms and data structures of 
your program.  It may be

Model
Code: Custom
Python, Naive
Bayes, Logistic
Regression, CNN,
RNN, LSTM, ....

Language Models



The Bag of Words (BOW) model represents a text  (sentence, sequence of 
words, entire corpus) by a multiset (bag) of all words in the text, i.e, just the 
vocabulary, no information about order of words!   Sometimes BOW also 
refers to simply sets of words (without the multiplicity). 

BoW1 =
{"John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mar
y":1,"too":1}; 
BoW2 =
{"Mary":1,"also":1,"likes":1,"to":1,"watch":1,"footbal
l":1,"games":1};

Language Models: BOWs



Probabilistic models: Assign a probability to text components (letters, words, sentences, 
....)   E.g., ambiguity problems can be recast as 

“given N choices for some ambiguous input, choose the most probable one”

“I went to they’re house on Sunday.”

there                  they’re                 their

Which is most likely?

Language Models: Probabilistic Models

“I went to their house on Sunday.
the bus.
holiday.
a very rainy day. 



§ Vector space models capture word meanings “you shall know a word by the 
company it keeps (Firth, J. R. 1957:11)”

http://methodmatters.blogspot.com/2017/11/using-word2vec-to-analyze-word.html

pasta, lamb, 
cheese, mushroom

citrus, apple, 
orange, lime

aromatic, nose,
scent, perfume

Language Models: Vector Models



Probabilistic Language Modeling

§ Why is this useful?
• Machine Translation:

• P(high winds tonite) > P(large winds tonite)
• Spell Correction

• The office is about fifteen minuets from my house
• P(about fifteen minutes from) > P(about fifteen minuets

from)
• Speech Recognition

• P(I saw a van) >> P(eyes awe of an)
• Text Generation:   "I", "I saw", "I saw a", "I saw a van."
• + Summarization, question-answering, etc., etc.!!



Probabilistic Language Modeling

§ Goal: compute the probability of a sentence or sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)
§ Related task: probability of an upcoming word:

P(w5|w1,w2,w3,w4)
§ A model that computes either of these:

P(W)     or     P(wn|w1,w2…wn-1)          
is called a language model (with probabilistic assumed). 



Probabilistic Language Modeling

§ You have seen these before!

More probable.



Probabilistic Language Modeling
Remark:

It is possible to apply this technique to any sequence, e.g., 
• Letters in a word; *
• Pitches in a melody; 
• Phonemes in a voice signal;
• Topics in a discourse. 



• How to compute the joint probability of a sentence:

• P( I went to their house on Sunday )

• Recall the definition of conditional probabilities

• p(B|A) = P(A and B) / P(A) Rewriting:   P(A and B) = P(A) * P(B|A)

• More variables:

• P(A and B and C and D) = P(A) × P(B|A) × P(C|A and B) × P(D|A and B and C)
• Etc.

Probabilistic Language Modeling



The Chain Rule applied to compute joint probability of words in sentence, say “I went 
to their house on Sunday.”

P( I went to their house on Sunday. )=
P( I ) × P(went|I) × P(to|I went) × P(their|I went to)

× P(house|I went to their) × P(on|I went to their house)
x  P(Sunday|I went to their house on)

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏

1 ≤ 𝑖 ≤ 𝑛

Probabilistic Language Modeling



Could we just count and divide?

P( Sunday | I went to their house on )    =

Count(I went to their house on Sunday) 

Count(I went to their house on) 

Probabilistic Language Modeling



Can we just count? Not realistic:

In an infinite set of sentences, the probability of any distinct sequence of words 
is 0.  So a data set is a small sample which hopefully represents the essential 
features of the language. 

But realistic data sets never have enough sample sequences, and sequences 
might be very long or simply not exist in your data. 

“I have been here before,” I said; I had been there before; first with Sebastian more than twenty years ago on a 
cloudless day in June, when the ditches were white with fools’ parsley and meadowsweet and the air heavy with all 
the scents of summer; it was a day of peculiar splendor, such as our climate affords once or twice a year, when leaf 
and flower and bird and sun-lit stone and shadow seem all to proclaim the glory of God; and though I had been there 
so often, in so many moods, it was to that first visit that my heart returned on this, my latest.”     Evelyn 
Waugh: Brideshead Revisited, first sentence. 

Probabilistic Language Modeling



So, if N = 2 
I went to their house on Sunday

I went 
went to

to their
their house

house on 
on Sunday

Terminology: An N-Gram is a sequence of N contiguous words from the data set. 

unigram = 1-gram, bigram = 2-gram, trigram = 3-gram, etc. 

Probabilistic Language Modeling

Solution:   Use a finite memory of the last N words (cf. the Markov Property, 
where N = 0)

If N = 3 
I went to their house on Sunday

I went to
went to their

to their house
their house on

house on Sunday



Markov Assumption: Only consider N-1 words of left context.

Thus, for a sequence of length M,

For small N, it is reasonable to count the number of N-Grams. Typical values 
are 1 ≤ 𝑁 ≤ 5. It is usual to add a beginning <s> and ending token </s> to 
sentences.

Probabilistic Language Modeling



Bigram Example (N = 2)

P( <s> I went to their house on Sunday </s> ) =

P( I |<s>) × P( went | I ) × P( to | went ) × P( their | to )

× P( house | their ) × P( on | house )

x  P( Sunday | on) x  P( </s> | Sunday )

Note that this calculation involves 
finding the number of occurrences 
of an N-gram and of an (N-1)-gram 
(the prefix)!

Probabilistic Language Modeling



Trigram Example (N = 3)

P( <s> I went to their house on Sunday </s> )=

P( I |<s>) × P( went | I ) × P( to | went ) × P( their | to )

× P( house | their ) × P( on | house )

x  P( Sunday | on) x  P( </s> | Sunday )

Probabilistic Language Modeling



A bigram example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Probabilistic Language Modeling



Remarks:   
This is almost trivial to code after you have separated your text into words and sentences. 

For small N, it will be reasonably efficient.  Check out the Google N-Gram viewer:

https://books.google.com/ngrams/

Probabilistic Language Modeling



Sentence generation using N-Grams

A clever feature of this model is that it can easily generate sentences. 

For bigrams, after calculating the probability of all bigrams appearing in the 
data. 

Pick a probable* bigram <s> w1
Pick a probable bigram w1 w2
.... etc. ...
End when you generate a bigram  wk </s>

* You may not want to always choose the most likely, or you will not be able to generate 
many sentences!

Probabilistic Language Modeling



Textbook examples of sentence generation from Shakespeare:

Probabilistic Language Modeling



Textbook examples of sentence generation from the Wall Street Journal:

Probabilistic Language Modeling



The problem with N-Gram models, and with FF NNs in general: long-range 
dependencies that are not captured by an N-gram for small N:

Many time series have periodic components that are not captured by small samples of size 
N:

Probabilistic Language Modeling



The problem with N-Gram models, and with FF NNs in general: long-range 
dependencies that are not captured by an N-gram for small N:

Natural language is strongly sequential, and has long-range dependencies:

I don’t think this movie is very good.

This movie, although I thought the prequel was excellent  (and I was looking 
forward to the next installment in the series),  is not very good. 

'I have been here before,' I said; I had been there before; first with Sebastian more than 
twenty years ago on a cloudless day in June, when the ditches were creamy with 
meadowsweet and the air heavy with all the scents of summer; it was a day of peculiar 
splendour, and though I had been there so often, in so many moods, it was to that first visit 
that my heart returned on this, my latest.    -Brideshead Revisited, Evelyn Waugh

Probabilistic Language Modeling



The problem with feedforward NNs

So far, our representations for texts have either

• Completely ignored sequencing (BOW, TFIDF, mean of embeddings, cosine 
similarity); or

• Accounted for very short 

(N-Grams):

Clearly we need better methods 

to  deal with sequenced data!

Probabilistic Language Modeling



One (partial) solution was CNNs

Recurrent Neural Network



Recurrent Neural Network

§ Basic unit is same with one important change: the 
output is fed back into the inputs:

Σ

h

x0 x1       xn xn+1

w0 w1       wn wn+1

...



Recurrent Neural Network

§ Basic unit is same with one important change: the 
output is fed back into the inputs:

Σ

h

x0 x1       xn xn+1

w0 w1       wn wn+1

You will see lots of less precise 
diagrams used which are 
equivalent:

(Just be sure to note the direction 
of the arrows, that all outputs 
have the same value, and that 
each input has a weight wi
attached to it!)

...



Recurrent Neural Network

In Linear Algebra:



Recurrent Neural Network

Unrolled through time:



Recurrent Neural Network

The LSTM (Long Short-Term Memory) is another, earlier design, still 
very much used:



Recurrent Neural Network

A typical design uses down-stream NN networks:



RNN Review: GRUs and LSTMs for NLP

A layer with N activation units and input/feature vector of length K has the 
following size:

FFNN:   N*K

GRU:  3 * (N2 + N*K)

LSTM:  4 * (N2 + N*K)

Summary:
• Most designs use embeddings as squence input to the first 

RNN layer
• Adding gates improves performance, but takes longer to train;
• Generally GRUs are preferred for large networks and large 

data sets; LSTMs for smaller. 
• “No Free Lunch Theorem”: It depends on the 

application!
• Many heuristics (e.g., picking certain 

initializations for weight instead of random) 
seem to help in many cases. 



Recurrent Neural Network

There are many ways to configure an RNN.  The 
simplest is a sequence-to-sequence RNN:



Recurrent Neural Network

Example: Part of speech tagging



Recurrent Neural Network

You can also take a single input and recursively 
process it using a vector-to-sequence RNN:

Example: Input 
is an image and 
the output is a 
text label for 
that image. 



Recurrent Neural Network

In a classification task, only a single output is 
needed, and by ignoring all but the last output, you 
have a sequence-to-vector RNN:

Example: Input 
is a movie 
review and 
output is 
classification 
into good, bad, 
neutral.



Recurrent Neural Network

Recurrent layers can feed into a feedforward network....



Recurrent Neural Network

And you can stack RNNs....



Recurrent Neural Network

Does this solve all our problems? Unfortunately not, due to 
the vanishing gradients problem: unrolling through time 
makes the network very large and preserving information 
(through weights) over long distances is a problem:



Long-term Dependencies

§ RNN might be able to connect previous 
information to the present task
§ When the gap between the relevant information and 

the place it is needed is small
§ E.g., predict the last word in ”the clouds are in the 

XXX”



Long-term Dependencies

§ RNN might be able to connect previous 
information to the present task
§ But there are cases where we need more context – it is 

possible that the gap between the relevant information 
and the point where it’s needed to become very large

gap



Long-term Dependencies

§ RNN might be able to connect previous 
information to the present task
§ As the gap grows, RNNs become unable to learn to 

connect the information
§ E.g., “I grew up in France. I learn to cycle when I was 

very young but only learned to swim as an adult. I also 
love to cook and bake. I can make a mean cake. Since 
I grew up there, I also speak fluent XXX”



Recurrent Neural Network

A solution to the vanishing gradients problem is to build a 
sequence-to-sequence RNN in two stages:  By combining 
a sequence-to-vector and a vector-to-sequence RNN, you 
have a sequence-to-sequence RNN, but with the 
advantage that the entire sequence is processed into some 
internal representation (a vector) and then processed into 
an output sequence.  This is a typical organization for a 
language translator....



Review: GRUs and LSTMs for NLP

Gated Recurrence Unit Networks add a recurrent activation path which acts as a 
memory; the gate determines how much of the information is “remembered” at 
each step of the sequence. 



Long Short Term Memory Layers use a separate “carry” path for the memory, 4 
gates, and calculate the activation from the memory and the current inputs:

RNN Review: GRUs and LSTMs for NLP



The universal method in the literature is to show these networks “unrolled through 
time,”
but keep in mind that these are illustrations only:

RNN Review: GRUs and LSTMs for NLP



How are Networks with Recurrent 
Layers Designed?

Deep Networks

Generally, networks for 
sequence data such 
as text have recurrent 
layers processing the 
sequence, and feed 
forward layers 
interpreting and 
producing output such
as a classification. 

GRU

GRU

GRU

FFNN

FFNN

FFNN

FFNN



How are Networks
with Recurrent 

Layers Designed?

Unrolling a deep RNN 
network reveals a very
complicated design!



How are Networks
with Recurrent 

Layers Designed?

Unrolling a deep RNN 
network reveals a very
complicated design!



How are Networks
with Recurrent 

Layers Designed?

Unrolling a deep RNN 
network reveals a very
complicated design!



How are Networks
with Recurrent 

Layers Designed?
MANY different 
designs have been 
proposed, with 
advantages and 
disadvantages. 

Idea 1:  Tree-
structured network 
which combines lower 
levels using some 
aggregating function 
(weighted) sum, 
perhaps controlled by 
a gate. 



How are Networks
with Recurrent 

Layers Designed?
MANY different designs have 
been proposed, with 
advantages and 
disadvantages. 

Idea 2:  Apply 1D 
Convolutions to the RNN 
layers. 

LSTM

LSTM

1D 
CNN

FFNN

FFNN

FFNN

1D 
CNN



How are Networks
with Recurrent 

Layers Designed?
MANY different designs have 
been proposed, with 
advantages and 
disadvantages. 

Idea 3:  Bidirectional RNN: 
Combine result of running 
two RNNs on forward and 
reverse sequence 
simultaneously. Results are 
fed to the next layer, usually 
by concatenation.  



Training RNNs with Sequence Data: 
Classification

NOTE: From now 
on, we’ll show 
every RNN 
unrolled through 
time, though you 
should always 
remember that 
there is a for loop 
controlling the 
whole process.) 

Example 1:  Sentnece classification

Easy!  Just use the last output and proceed as usual!



Training RNNs with Sequence Data: POS 
Tagging

NOTE: From now 
on, we’ll show 
every RNN 
unrolled through 
time, though you 
should always 
remember that 
there is a for loop 
controlling the 
whole process.) 

Example 2:  Part-of-Speech Tagging

In POS Tagging, the input is a sentence, and the 
output is a sequence of multinomial classifications into 
parts of speech:



For each word in the sequence, the estimated tag is compared with the 
actual tag label, and the log loss is added across the whole sequence; to 
prevent longer sequences from having lower probabilities, we take the 
average log loss per token:

Log loss:                            0.01    +    0.003  +   0.023  +    0.005  +  0.04             
=  0.081 / 5 = 0.0162

Training RNNs with Sequence Data: POS Tagging



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model

Recall: A Language Model assigns a probability to each sequence of words.
To teach an RNN a language model, we can add the log loss of each word 
generated compared with an N-Gram model (there are more sophisticated 
approaches). 

Log loss:                            0.021    +   0.0034  +   0.0023  +  ....



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model

A sentence generator using the trained RNN can generate sentences by picking 
the most likely next word in each step, until it generates the end-of-sentence 
token </s>: 



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model from a Context.

An important variation of the autoregressive generator is to give the RNN a 
context at the beginning; here we give the generator the start-of-sentence token 
<s> (which says that the next word is one that must follow <s>, duh...). 

<s>



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model from a Context.

But this context could be anything! For example, we could give it an integer:

-1   Negative movie review
0   Neutral movie review
1   Positive movie review -1

Worst    movie    I’ve      ever     
seen        !

0

It          was       ok      
nothing   great     .



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model from a Context.

Or it could be an author to imitate:

Shakes
peare

How       now      sir         hark       
ye        well

Hom
er

The       hollow   ships    of         the        
Achaeans



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model

One Problem:  The RNN makes local decisions about the 
most likely next word. However, a series of such local 
decisions will not necessarily find the globally most likely 
sentence (cf. gradient descent, which has the same 
problem). 

The usual optimization is Beam Search:  

1. Pick the “width of the beam” N (at each iteration, we will 
store the N most likely sequences of words);

2. Generate a list of the N most likely words to start a 
sentence, and concatenate them with <s>; 

3. At each iteration, examine ALL possible next words in the 
sequence; toss all but the N most likely sequences; 

4. Repeat until </s> is generated.  Return the most likely 
sentence. 

Note: 
sentences 
might be 
different 
lengths; 
stop when 
sequence 
ends in 
</s>. 



Training RNNs with Sequence Data: Generating 
Sentence using a Language Model

Example of Beam Search with N = 2 using letters 
instead of words:

Result:  
AED

Punchline: Beam search is not guaranteed to find the optimal sequence, 
but as a heuristic it works very well. There is an obvious 
efficiency/performance tradeoff. Common values of N are 10, 100, 1000. 


