CS 4100: Introduction to Al

Wayne Snyder
Northeastern University

Lecture 22 -- Deep Learning -- Language Models, Sequence Data, and Recurrent NNs.




Plan for this week

Plan for this Lecture:

* Sequence data: Time series, audio, text
* Language Models: N-Gram Models
* Adding memory to NNs: Recurrent NNs

Wednesday's Lecture:

* RNNs, GRUs, LSTMs
* Adding Atttention: BERT, GPT



Recall: Feedforward Neural Networks

(With a little bit of Linear Algebra in Python thrown in......

Recall that a single neuron does logistic regression using the dot product of a vector of
weights and a vector of input values, sends the sum through a non-linear activation

function f, and outputs the result to the next layer:

Output value y
or Activation

Non-linear transform

X1
o [ X } Weighted sum
X Weights bias
1
X X2 X3
X = (x1, X2, ... Xk). a Input layer
w
w=| /
Wy e 'r
! I = f ( w x)
w—(X)




Recall: Feedforward Neural Networks

(With a little bit of Linear Algebra in Python thrown in

This 1s nearly trivial to implement in Python

In [14]:

<
n

0 X

18 print(f'w
19 print(f'x
0 print(f'w . x = {np.dot(w,x )}\n')

import numpy as np

3 def relu(x):

return np.maximum(x,0)

6 def sigmoid(x):

return 1/(l+np.exp(-X))

9 def neuron(f,w,x):

return f( np.dot(w,x ) )

12 # Test

np.array( [1.,2.,1.,0.])

[0.25,1.,3.,4.]

{w}\n")
{x}\n")

print (f'neuron(relu,w,x)

2 print(f'neuron(sigmoid,w,x)
3 print(f'neuron(tanh,w,x)

{neuron(relu,w,x)}\n")
{neuron(sigmoid,w,x)}\n")
{neuron(np.tanh,w,x)}\n")

a

w=[1l. 2. 1. 0.]

x = [0.25, 1.0, 3.0,
w . x =5.25
neuron(relu,w,x)
neuron(sigmoid,w, x)

neuron(tanh,w, x)

a = f(w'x)

4.0]

5.25
0.9947798743064417

0.9999449286177708



Recall: Feedforward Neural Networks

(With a little bit of Linear Algebra thrown in......

Feed-Forward Layer just applies this dot-product-then-activation-function in parallel,

using matrix multiplication, and activation functions applied elementwise:

a
T
wyp Wiy ot Wik X WiX ' l
Wy Wy v Wy X2 W) X [ £]
Wx= X = 2 . .L.
: : " : : T [ a = f(Wx)
Wy Wy Wk Xk Wn X —(X)
n n n " W “‘->.<-/ ;
|
X y
a=(a],02,---’an)‘ ]
//, .l . . softmax
v/’ ,‘ a = f( W'I X )
wi—(X wi —(X Wi, —(X
\,\' . =
\"\_\ All the matrices are parameters [—%
% | that need to be learned during wWi—X)
e | oo training. :
-
X = (X1, X0, oo s Xi) X
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Sequence Data: A problem for FF NNs

(With a little bit of Linear Algebra thrown in

If you know a little linear algebra in Python, this 1s again trivial to implement:

1 import numpy as np
2 from scipy.special import softmax

def relu(x):
return np.maximum(x,0)

7 def sigmoid(x):
8 return 1/(l+np.exp(-x))

10 def FFNN(f,W,x):
return f( W @ x )

# Test

=
]

145 np.array( [[1.,0.,0.,0.],
16 [0e 105 70D
17 [L0X%7 01, 420, OS]0 )

19 x = [0.25,1.,3.,4.]
21 print(f'Ww =\n {W}\n')
22 print(f'x = {x}\n')
23 print(f'wx = {Wex}\n')

24 print(f'FFNN(relu,W,x) = {FFNN(relu,W,x)}\n')
25 print(f'FFNN(sigmoid,W,x) = {FFNN(sigmoid,W,x)}\n')
26 print(f'FFNN(tanh,W,x) = {FFNN(np.tanh,W,x)}\n"')

27 print(f'FFNN(softmax,W,x) = {FFNN(softmax,W,x)}\n')

W =
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]
x = [0.25, 1.0, 3.0, 4.0]
Wx = [0.25 1. 3. 1]
FFNN(relu,W,x) = [0.25 1. 3. 1]
FFNN(sigmoid,W,x) = [0.5621765 0.73105858 0.95257413]
FFNN(tanh,W,x) = [0.24491866 0.76159416 0.99505475]

FFNN(softmax,W,x) = [0.05330595 0.1128487 0.83384535]



Sequence Data: A problem for FF NNs

A Feed-Forward Neural Network learns a function from vectors to vectors:

X1 —> — q
X2 —
X, —* — a,

Input vectors may be one-hot word vectors, pixel densities, etc. etc.

Note: The order of the inputs does not matter!



Sequence Data: A problem for FF NNs

HOWEVER, many kinds of data are inherently sequential, often as a time series:

Words in a sentence: The matters order
Order the matters
Matters order the
The order matters

Audio: Population:

Kt World population growth, 1700-2100 ...,
/\_Annual growth rate of the world population 3
__MWorld population

‘‘‘‘‘‘‘‘
‘‘‘‘‘
.....

Stock prices: -

5 Bilion,

‘‘‘‘‘‘‘

‘‘‘‘‘‘‘
“““““

xxxxxxxxxxx

We will first consider a simple way of dealing with sequence information, using N-
Grams model in NLP; then we shall consider a more essential fix to the notion of a
layer in a network.



Language Models

A Language Model is a simplified representation of a language
which facilitates an NLP task, where

A language (potentially infinite) is approximated by a (finite)
data set; and
The model is a set of (simplified) assumptions about the

language, embodied by the algorithms and data structures of
your program. It may be

\ Code: Custom

Python, Naive

Bayes, LogistiC ey
» Regression, CNN, NLP Task

RNN, LSTM, ....

Image source: medium.com



Language Models: BOWs

The Bag of Words (BOW) model represents a text (sentence, sequence of
words, entire corpus) by a multiset (bag) of all words in the text, i.e, just the
vocabulary, no information about order of words! Sometimes BOW also
refers to simply sets of words (without the multiplicity).

(1) John likes to watch movies. Mary likes movies too.

(2) Mary also likes to watch football games.

/ BoW1 =

{"John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mar

: y":1,"too":1};
BoW2 =
{"Mary":1,"also":1,"likes":1,"to":1,"watch": 1,"footbal

I":1,"games": 1};

"John","likes","to","watch", "movies", "Mary","likes", "movies", "too"

"Mary","also","likes","to","watch","football", "games"



Language Models: Probabilistic Models

Probabilistic models: Assign a probability to text components (letters, words, sentences,
....) E.g., ambiguity problems can be recast as

“given N choices for some ambiguous input, choose the most probable one”

“I went to they’re house on Sunday.”

“I went to their house on Sunday.
the bus.
holiday.

there they’re their a very rainy day.

Which is most likely?



Language Models: Vector Models

Vector space models capture word meanings “you shall know a word by the
company it keeps (Firth, J. R. 1957:11)”
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Probabilistic Language Modeling

" Why is this useful?

Machine Translation:

* P(high winds tonite) > P(large winds tonite)

Spell Correction
* The office 1s about fifteen minuets from my house

* P(about fifteen minutes from) > P(about fifteen minuets
from)

Speech Recognition

* P(I saw a van) >> P(eyes awe of an)

Text Generation: "I", "I saw", "I saw a", "I saw a van."

+ Summarization, question-answering, etc., etc.!!



Probabilistic Language Modeling

= Goal: compute the probability of a sentence or sequence of words:
P(W) = P(W{,W,,W3,W4,Ws...W,)
= Related task: probability of an upcoming word:
P(Ws|w,Wy,W3,Wy)
* A model that computes either of these:
P(W) or P(w, W Wjy...W, )

1s called a language model (with probabilistic assumed).



Probabilistic Language Modeling

You have seen these before!

gle

Go

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

what is the |

Google Search

U

‘ More probable.

I'm Feeling Lucky



Probabilistic Language Modeling

Remark:

It is possible to apply this technique to any sequence, e.g.,
e Letters in a word; *
* Pitches in a melody;
* Phonemes in a voice signal;

* Topics in a discourse.



Probabilistic Language Modeling

How to compute the joint probability of a sentence: -
( (/ \\ V\“\‘ Conditional Probability Formula
. NN / pa|p=2400)
* P(I went to their house on Sunday ) GO P(B)
O p4) Pr;obabilﬁy+ha+Aoooursng5n
O P(B) that B has already ocoured
0 P(ANnB)

Recall the definition of conditional probabilities

* p(BJ[A)=P(Aand B)/P(A) Rewriting: P(A and B) =P(A) = P(B|A)

More variables:

e P(Aand B and C and D) =P(A) X P(B|A) X P(C|A and B) X P(D|A and B and C)
Etc.



Probabilistic Language Modeling

The Chain Rule agplied to compute joint probability of words in sentence, say “I went
to their house on Sunday.”

Pww,..w )= HP(wi ww,..w._,)

1<i<n

P( I went to their house on Sunday. )=
P(I) X P(went|I) X P(to]|I went) X P(their|l went to)
X P(house|I went to their) X P(on|l went to their house)
X P(Sunday|I went to their house on)



Probabilistic Language Modeling

Could we just count and divide?

P(Sunday | | went to their houseon) =

Count{(l went to their house on Sunday)

Count(l went to their house on)



Probabilistic Language Modeling

Can we just count? Not realistic:

In an infinite set of sentences, the probability of any distinct sequence of words
is 0. So a data set is a small sample which hopefully represents the essential

features of the language.

But realistic data sets never have enough sample sequences, and sequences
might be very long or simply not exist in your data.

“I have been here before,” | said; | had been there before; first with Sebastian more than twenty years ago on a
cloudless day in June, when the ditches were white with fools’ parsley and meadowsweet and the air heavy with all
the scents of summer; it was a day of peculiar splendor, such as our climate affords once or twice a year, when leaf
and flower and bird and sun-lit stone and shadow seem all to proclaim the glory of God; and though | had been there
so often, in so many moodes, it was to that first visit that my heart returned on this, my latest.”  Evelyn

Waugh: Brideshead Revisited, first sentence.



Probabilistic Language Modeling

Solution: Use a finite memory of the last N words (cf. the Markov Property,
where N = 0)

Terminology: An N-Gram is a sequence of N contiguous words from the data set.

unigram = 1-gram, bigram = 2-gram, trigram = 3-gram, etc.

So, if N =2 IfN=3
I went to their house on Sunday I went to their house on Sunday
I went I went to
went to went to their
to their to their house
their house their house on
house on house on Sunday

on Sunday



Probabilistic Language Modeling
Markov Assumption: Only consider N-1 words of left context.

Thus, for a sequence of length M,

P(wiw; ... wy) ~ H P(w;|wi-n41 ... Wi—1)
N<i<M-N

For small N, it 1s reasonable to count the number of N-Grams. Typical values
are 1 < N < 5. Itisusual to add a beginning <s> and ending token </s> to
sentences.



Probabilistic Language Modeling

Bigram Example (N = 2)

P( <s> I went to their house on Sunday </s>) =
P(I|<s>)xP(went|I)x P(to|went)x P(their|to)
x P( house | their ) X P( on | house )
x P( Sunday | on) x P( </s>| Sunday )

C(<s>1)
P(l|<s>) =
(11 ) C(<s>)
C(Iwent) Note that this calculation involves
P(went|I) ~ cD finding the number of occurrences

of an N-gram and of an (N-1)-gram
(the prefix)!



Probabilistic Language Modeling

Trigram Example (N = 3)

P( <s> I went to their house on Sunday </s> )=
P(I|<s>)xP(went|I)x P(to|went)x P(their|to)
x P( house | their ) X P( on | house )
x P( Sunday | on) x P( </s>| Sunday )

C(<s>1went)
C(<s>1)
C(Iwentto)
C(Iwent)

P(went | <s>1)

P(to | I went)




Probabilistic Language Modeling

A bigram example

Pw, lw,_)=

3

I|<s> -

—

P(</s>|Sam

c(w,_,,w.)

c(w,_,)

|
o)
|
=
n

rI| =

<s> 1 am Sam </s>
<s>Sam I am </s>
<s> I do not like green eggs and ham </s>

P(Sam|<s>)=1=.33 P(am|I)
=.5 P(do|I)

P9

P(Sam|am) =

I —= LI

v ~]



Probabilistic Language Modeling

Remarks:

This 1s almost trivial to code after you have separated your text into words and sentences.
For small N, it will be reasonably efficient. Check out the Google N-Gram viewer:

https://books.google.com/ngrams/

N - gram
computational linguistics

Natural language processing

T T T
1940 1960 1980 2000
neural networks

Artificial Intelligence
deep learning

T T
1940 1960 1980 2000



Probabilistic Language Modeling

Sentence generation using N-Grams

A clever feature of this model is that it can easily generate sentences.

For bigrams, after calculating the probability of all bigrams appearing in the
data.

Pick a probable™ bigram <s> w,

Pick a probable bigram w; w,

... etc. ...

End when you generate a bigram w, </s>

* You may not want to always choose the most likely, or you will not be able to generate
many sentences!



Probabilistic Language Modeling

Textbook examples of sentence generation from Shakespeare:

|

gram

2

gram

3

gram

4

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

DT IR Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.



Probabilistic Language Modeling

Textbook examples of sentence generation from the Wall Street Journal:

1 Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram  point five percent of U. S. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram  Brazil on market conditions

IOTQIIVIREY  Three sentences randomly generated from three n-gram models computed from
40 million words of the Wull Street Journaul, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.



Probabilistic Language Modeling

The problem with N-Gram models, and with FF NNs in general: long-range
dependencies that are not captured by an N-gram for small N:

Many time series have periodic components that are not captured by small samples of size
N:

05 T T r T : T :
Lead Time at Which CRPSS (skill) Drops Below 25%
i )
1 ’ H f 'l ‘
| A ‘. A I a a
i‘ | . f\ A I‘ | H I i \'I 1 | "‘ . a “ | \ ) 2 '| l
10 A E (M~ 1”' "‘| ‘| ‘| || I\ | J.‘ | Ii.l AN lll 1 ’,‘ | A n "| L
9 g 0-[ | | [! ln -" '-‘li‘uﬂ’“ |i‘-“‘.’ '|‘I ) | |1 \l M I“I‘ “,‘“ 1:" | | |"‘ I.' Vi
; ol I l.l - ] V v | ] v J‘ | l v ||| - ‘ ‘ |;' | Vv }'.' ‘
6] A A i (A
T | I/ |
3 7 . ' \\I
Summer 05 1 i 1 l i L 1 L -
6 0 50 100 150 200 250 300 350 400 450 500
2019 Sample
5 4
4 T T T T T T T T T T BUSINESS CYCLE
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
- 12-month running average = —— 3-month running average OUTPUT (GDP) (ﬁfg‘ff-}-’;}

VAN PEAK  CONTRACTION

B EXPANSION

TROUGH

> TIME

Maternal heartbeat signal.



Probabilistic Language Modeling

The problem with N-Gram models, and with FF NNs in %eneral: long-range
dependencies that are not captured by an N-gram for small N:

Natural language 1s strongly sequential, and has long-range dependencies:

I don’t think this movie i1s very good.

This movie, although I thought the prequel was excellent (and I was looking
forward to the next installment in the series), is not very good.

'l have been here before,' I said; I had been there before; first with Sebastian more than
twenty years ago on a cloudless day in June, when the ditches were creamy with
meadowsweet and the air heavy with all the scents of summer; it was a day of peculiar
splendour, and though I had been there so often, in so many moods, it was to that first visit
that my heart returned on this, my latest. -Brideshead Revisited, Evelyn Waugh



Probabilistic Language Modeling

The problem with feedforward NNs

So far, our representations for texts have either

* Completely ignored sequencing (BOW, TFIDF, mean of embeddings, cosine
similarity); or

p(ant]...) p(doe|...)  p(fish]...) p(zebral...)
* Accounted for very short \ 1 f f
| s (@~ @~ @~ ©)
(N-Grams): =
hidden layer h ( h ]
LN A
embedding layer e @
Clearly we need better methods o for | al | e [ 713

. Wt-3 Wt.2 W1 ot
tO deal W]th Sequenced data! Simplified sketch of a feedforward neural language model moving through a
text. At each time step r the network converts N context words, each to a d-dimensional

embedding, and concatenates the N embeddings together to get the Nd x 1 unit input vector
x for the network. The output of the network is a probability distribution over the vocabulary

representing the model’s belief with respect to each word being the next possible word.



Recurrent Neural Network

One (partial) solution was CNNs

Feature

/BT Map 1

Zi0)

= dLle

Filters

4d]---

[~ Map1

/;‘
AT
-
R
TR
———
\
: v
/i

M v

Channels
Red
Green
Blue

Convolutional
layer 2

Convolutional
layer 1

Input layer




Recurrent Neural Network

= Basic unit is same with one important change: the
output is fed back into the inputs:

h

l




Recurrent Neural Network

= Basic unit is same with one important change: the
output is fed back into the inputs:

You will see lots of less precise
diagrams used which are
equivalent:

®

A

L

b

(Just be sure to note the direction
of the arrows, that all outputs
have the same value, and that
each input has a weight w;
attached to it!)




Recurrent Neural Network

In Linear Algebra:

<t>
a

A Step _ a((b - 0

W_')< Ot ™ 1.8.i5 2D

| a<” = tanh(W(a<"":x°))
-
a<r—l>
<>
X
v l v 1 -9 —
Wy w, wy, wh,
W = — ’
/ / /
LW Wn i wn,l wn,2

<l> <2> <T>

W11

w1

Wi

W

Wik
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Recurrent Neural Network

Unrolled through time:

<l> <2> <T>

a<'I‘—l> a<l>
‘Ianh . 'lunh
W —(x W —x
x<T—1> x<l‘>
a<(1> - 0

oY €t m 1,2:050 303

a<” = tanh(W(a<~" "

:x<f>))



Recurrent Neural Network

The LSTM (Long Short-Term Memory) 1s another, earlier design, still
very much used:

:StepIL
c<-1> ¥ \'+/ o<
l“‘JW C<0> =0
— (%)
g g & I " P a<0> =10
"O’] [T,T] 'E"h --------- ’Jof‘- for t = 1’2’ .- e ’T:
1 T i i 1 »
We—X) W= Wi~ | Wo~® gr<” = o (W (a9 7:x%7))
_____________________________________________ go<r> - 0_( WO (a<t—l>: x<r>))
‘ <> _ <t-1>, <>
| | . gu " = o(Wy (a¥7:x7))
=15 ©) ' Y ~ -

’ T ¢ = tanh (W, (a< " :x<))
‘ c<r> o gu<r>*(~:<l> + gf<1> *c<'_l>
< a<> = go<1> % tanh (¢<*)

| step |




Recurrent Neural Network

A typical design uses down-stream NN networks:

|

softmax




RNN Review: GRUs and LSTMs for NLP

A layer with N activation units and input/feature vector of length K has the

following size: —

W, w oW

1n
why wh, oW, Wy Wy v Wy

Wy Wyp o Wi

W’l w
w
W= '2 w2

‘V’,, Wa 1 w;‘,z w:ul Wpy Wyp v Wy

w,

FENN: N*K

['step
W —& =
L

st

GRU: 3 * (N2 + N*K)

&l

LSTM: 4 * (N2 + N*K)

Summary:

* Most designs use embeddings as squence input to the first i
RNN layer

« Adding gates improves performance, but takes longer to train;

» Generally GRUs are preferred for large networks and large
data sets; LSTMs for smaller.

* “No Free Lunch Theorem”: It depends on the
application!

* Many heuristics (e.g., picking certain
initializations for weight instead of random)
seem to helb in manv cases.

H



Recurrent Neural Network

There are many ways to configure an RNN. The
simplest is a sequence-to-sequence RNN:




Recurrent Neural Network

Example: Part of speech tagging

Argmax NNP MD VB DT NN

A A A A

Softmax over

ool )( )

: J(alls J[ s
M)

=4 11 ) ]

Words Janet will back the bill

Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.




Recurrent Neural Network

You can also take a single input and recursively

process it using a vector-to-sequence RNN:

Example: Input
IS an image and
the output is a
text label for
that image.



Recurrent Neural Network

In a classification task, only a single output is
needed, and by ignoring all but the last output, you

have a sequence-to-vector RNN:
Example: Input

IS a movie
review and
output is
classification
iInto good, bad,
neutral.




Recurrent Neural Network

Recurrent layers can feed into a feedforward network....

Softmax

‘FFN)

A

C )
] I 17 ,

(= L e )
) B & :
g X2 3 *n

Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.



Recurrent Neural Network

And you can stack RNNSs....

79 :
A ﬁl I
@ D
RNN 3
\_ ] [} W,
8 N
— RNN 2
& 1 $ J
( ‘ RNN 1 = j
1 1 i 1
X4 Xo Xg Xn

QPO R  Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.



Recurrent Neural Network

Does this solve all our problems? Unfortunately not, due to
the vanishing gradients problem: unrolling through time
makes the network very large and preserving information
(thrg:gtggl y}q/yeejghts) over long distances is a problem:

Recurrent Layer
Recurrent Layer
Input Layer

Vanishing Gradient: where the contribution from the earlier steps

becomes insignificant in the gradient for the vanilla RNN unit.



Long-term Dependencies

= RNN might be able to connect previous
information to the present task

= When the gap between the relevant information and
the place it is needed is small

= E.g., predict the last word in "the clouds are in the
XXX”
@ @ )
1 299

T

l
l
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Long-term Dependencies

= RNN might be able to connect previous
information to the present task

= But there are cases where we need more context — it is
possible that the gap between the relevant information
and the point where it’s needed to become very large

® ® ® ® €5
I T?T

gap

!




Long-term Dependencies

= RNN might be able to connect previous
information to the present task

= As the gap grows, RNNs become unable to learn to
connect the information

= E.g., “I grew up in France. I learn to cycle when I was
very young but only learned to swim as an adult. I also
love to cook and bake. I can make a mean cake. Since

I grew up there, I also speak fluent XXX”



Recurrent Neural Network

A solution to the vanishing gradients problem is to build a
sequence-to-sequence RNN in two stages: By combining
a sequence-to-vector and a vector-to-sequence RNN, you
have a sequence-to-sequence RNN, but with the
advantage that the entire sequence is processed into some
internal representation (a vector) and then processed into

an output sequence. This is a typical organization for a
langu




Review: GRUs and LSTMs for NLP

Gated Recurrence Unit Networks add a recurrent activation path which acts as a
memory; the gate determines how much of the information is “remembered” at

each step ¢ * .
Iﬁl

<t>

]
— & 5 a<0> =0

for t =1,2,... ,T:
<> _ G(WR(a<t—l>:X<t>))

Recall Gate Update Gate
___________________________ 8r

: o] | g = o (Wy (a¥>:x))

E : E > = tanh(WA((g,<'>*a<"1>):x<’>))
i WR‘EE E EWU a<” = g“<t>* a4 a- gu<’>) «a<1>

<t>
X



RNN Review: GRUs and LSTMs for NLP

Long Short Term Memory Layers use a separate “carry” path for the memory, 4
gates, and calculate the activation from the memory and the current inputs:

H




RNN Review: GRUs and LSTMs for NLP

The universal method in the literature is to show these networks “unrolled through
time,”
but keep in mind that these are illustrations only:

.......
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FFNN
FENN

Deep Networks &
W) EENN

f
\

Generally, networks for
sequence data such ] EENN

as text have recurrent Wi—C) =T —
layers processing the

sequence, and feed . _
forward layers ] W _I?

interpreting and ]_i —

producing output such o T
as a classification. |

<t>
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How are Netwot
with Recurrent
Layers Designed

MANY different
designs have been
proposed, with
advantages and
disadvantages.

Idea 1: Tree-
structured network
which combines lower
levels using some
aggregating function
(weighted) sum,
perhaps controlled by
a gate.




How are Networks
with Recurrent
Layers Designed?

MANY different designs have
been proposed, with
advantages and
disadvantages.

ldea 2: Apply 1D
Convolutions to the RNN
layers.

y

softmax

FENN

EENN

EENN

1D

CNN
1D

S ST
T
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How are Networks T —
with Recurrent | |
Layers Designed?

MANY different designs have s i i

been proposed, with i |
advantages and x<l>,x<3>,....x<i\’....,x<1_l>‘x<1> X<T>.X<T_l>.....x<j>.....x<2>.x<l>
disadvantages. . " - .
Idea 3: Bidirectional RNN: ”H‘ ”Uﬁ oty 'H.]
Combine result of running ( —{J——RNN2 ——E]]
two RNNs on forward and

reverse sequence (= L RN )
simultaneously. Results are \8 \@ @

fed to the neXt Iayer’ usua”y A bidirectional RNN. Separate models are trained in the forward and backward

. directions, with the output of each model at each time point concatenated to represent the
by CO n Cate n atl 0 n . bidirectional state at that time point.



Training RNNs with Sequence Data:
Classification

Example 1: Sentnece classification

Easy! Just use the last output and proceed as usual!

{FFN)

u&

" —
@ 8
Sequence classification using a simple RNN combined with a feedforward net-

work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

NOTE: From now
on, we’ll show
every RNN
unrolled through
time, though you
should always
remember that
there is a for loop
controlling the
whole process.)



Training RNNs with Sequence Data: POS
Tagging

Example 2: Part-of-Speech Tagging

In POS Tagging, the input is a sentence, and the NOTE: From now
output is a sequence of multinomial classifications into on, we’ll show
parfc nf enaarh: every RNN
agnec  NNP MD VB U NN unrolled through
y .
Soﬂmmf( T i i T D time, though you
tags dls J{_« dlo J{_udls should always
- V"[}] . J_‘ JJ_‘ JL i:l remember that
Laver | L. L L ) there |s.a for loop
| controlling the
ke 9 whole process.)
Words Janet will back the bill
Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained

word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.



Training RNNs with Sequence Data: POS Tagging

For each word in the sequence, the estimated tag is compared with the
actual tag label, and the log loss is added across the whole sequence; to
prevent longer sequences from having lower probabilities, we take the

average log loss per token:

0.003 + 0.023 +

Log loss: 0.01 +
COUTRITUET W w o w
1 4
p— )
oo Lats J( i (s J(sdts (o
RNN vTi] h '17 JI7 II1 :i]
S ;S )

Words

Janet

will

back

the

—A 1 1)

bill

the part-of-speech tags as output at each time step.

Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over

0.005 + 0.04



Training RNNs with Sequence Data: Generating
Sentence using a Language Model

Recall: A Language Model assigns a probability to each sequence of words.
To teach an RNN a language model, we can add the log loss of each word
generated compared with an N-Gram model (there are more sophisticated

approaches).
Log’loss: 0.021 + 0.0034 + 0.0023 + ...
Sampled Word SO// i loné ’ i and ’ E ?
[ [ |
L | | | I
softmax (ol ) | (Gadn) | (ali) | (Ladio)
3 ! 3 ! o 3
l I I
(v [
S 4 ' g 4 )
[ [ |
[ [ |
Input Word <8> i ; /SO i //I,Ong E 5 and
Autoregressive generation with an RNN-based neural language model.




Training RNNs with Sequence Data: Generating
Sentence using a Language Model

A sentence generator using the trained RNN can generate sentences by picking
the most likely next word in each step, until it generates the end-of-sentence
token </s>:

//j //j //j
SampledWord So | long | and | ?
PN
sofmax (i) | () | (odi) | (o)
; [ ; Y | 'y
| I I
I : : B
RNN : —| |
3 : 3 - 4 : 4 -/
| | |
Embedding : : :
T
Input Word <s> ! ,So : /I’ong : and
| 7 | 7 | 7
\7 \7 \7
Autoregressive generation with an RNN-based neural language model.




Training RNNs with Sequence Data: Generating
Sentence using a Language Model from a Context.

An important variation of the autoregressive generator is to give the RNN a
context at the beginning; here we give the generator the start-of-sentence token
<s> (which says that the next word is one that must follow <s>, duh...).

//ql ,/~| //QI
SampledWord So | long | and | ?
| 1
somax (G | Gl | Gl | Gl
3 I ) I 3 [ )
| | |
l : : P
RNN : i :
e [ A ! 4 >
I I I
Embedding ! ! I
D S : : :
\\\\\ I I [
LT I I [
Input Word <8> | /’SO | /Long | /and
7 7 7
\7 \7 \7
QTR Autoregressive generation with an RNN-based neural language model.




Training RNNs with Sequence Data: Generating
Sentence using a Language Model from a Context.

But this context could be anything! For example, we could give it an integer:

-1

Negative movie review

O Neutral movie review

1

Positive movie review

Worst movie I've ever
sgen !

It was ok
t




Training RNNs with Sequence Data: Generating
Sentence using a Language Model from a Context.

Or it could be an author to imitate:

How now Sir hark
y well

Shakes —
peare

The hollow ships of the
haefns

Hom =
er




Training RNNs with Sequence Data: Generating
Sentence using a Language Model

One Problem: The RNN makes local decisions about the (o CHAHA
most likely next word. However, a series of such local - ? 3; ? ?
decisions will not necessarily find the globally most likely S gl g
sentence (cf. gradient descent, which has the same

problem).

The usual optimization is Beam Search:

1. Pick the “width of the beam” N (at each iteration, we will
store the N most likely sequences of words);

2. Generate a list of the N most likely words to start a

sentence, and concatenate them with <s>; Note:
: : : : . sentences
3. At each iteration, examine ALL possible next words in the might be
sequence; toss all but the N most likely sequences; different
4. Repeat until </s> is generated. Return the most likely lengths;
sentence. stop when
sequence

ends in



Training RNNs with Sequence Data: Generating
Sentence using a Language Model

o~
P

n: |

I

?

P

o
Q.

27 |
sampledWord  So | long |
I

|
Softmax i

. .
Example of Beam Search with N = 2 using letters = -
instead of words: wn 8§ 8 8 B
put Word <s> P /'So /I'ong P ﬂand
- ABA Autoregressive geueran'/on with an RNN-based neural language model.
AA : ” » ABB
- A * ABD RS
A & ™ ABE
///E‘ \ = AB-END
> 4 x
/- il w3 A-END Y A
<START> € » ) e Result:
\ END
N g 5/_/. AEB . = AED

4 CA /o //V
N\, % .r—» > AEC 7
END ™ / » CB AN
/- \_*| AED 02
A& « =)
N~ L AEE

AZ-END

Punchline: Beam search is not guaranteed to find the optimal sequence,
but as a heuiristic it works very well. There is an obvious
efficiency/performance tradeoff. Common values of N are 10, 100, 1000.



