
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 22 -- Deep Learning -- Language Models, Sequence Data, and Recurrent NNs.

Plan for this week

Plan for this Lecture:

• Sequence data: Time series, audio, text
• Language Models: N-Gram Models
• Adding memory to NNs: Recurrent NNs

Wednesday's Lecture:

• RNNs, GRUs, LSTMs
• Adding Atttention: BERT, GPT

Recall that a single neuron does logistic regression using the dot product of a vector of
weights and a vector of input values, sends the sum through a non-linear activation
function f, and outputs the result to the next layer:

Recall: Feedforward Neural Networks
(With a little bit of Linear Algebra in Python thrown in......

This is nearly trivial to implement in Python

(With a little bit of Linear Algebra in Python thrown in......

Recall: Feedforward Neural Networks

Feed-Forward Layer just applies this dot-product-then-activation-function in parallel,
using matrix multiplication, and activation functions applied elementwise:

(With a little bit of Linear Algebra thrown in......

Recall: Feedforward Neural Networks

All the matrices are parameters
that need to be learned during
training.

If you know a little linear algebra in Python, this is again trivial to implement:

Sequence Data: A problem for FF NNs
(With a little bit of Linear Algebra thrown in......)

A Feed-Forward Neural Network learns a function from vectors to vectors:

Input vectors may be one-hot word vectors, pixel densities, etc. etc.

Note: The order of the inputs does not matter!

Sequence Data: A problem for FF NNs

HOWEVER, many kinds of data are inherently sequential, often as a time series:

Words in a sentence: The matters order
Order the matters
Matters order the
The order matters

Audio:

Stock prices:

Sequence Data: A problem for FF NNs

We will first consider a simple way of dealing with sequence information, using N-
Grams model in NLP; then we shall consider a more essential fix to the notion of a
layer in a network.

Population:

Image source: medium.com

NLP Task
Language

≈
Data Set

A Language Model is a simplified representation of a language
which facilitates an NLP task, where
• A language (potentially infinite) is approximated by a (finite)

data set; and
• The model is a set of (simplified) assumptions about the

language, embodied by the algorithms and data structures of
your program. It may be

Model
Code: Custom
Python, Naive
Bayes, Logistic
Regression, CNN,
RNN, LSTM,

Language Models

The Bag of Words (BOW) model represents a text (sentence, sequence of
words, entire corpus) by a multiset (bag) of all words in the text, i.e, just the
vocabulary, no information about order of words! Sometimes BOW also
refers to simply sets of words (without the multiplicity).

BoW1 =
{"John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mar
y":1,"too":1};
BoW2 =
{"Mary":1,"also":1,"likes":1,"to":1,"watch":1,"footbal
l":1,"games":1};

Language Models: BOWs

Probabilistic models: Assign a probability to text components (letters, words, sentences,
....) E.g., ambiguity problems can be recast as

“given N choices for some ambiguous input, choose the most probable one”

“I went to they’re house on Sunday.”

there they’re their

Which is most likely?

Language Models: Probabilistic Models

“I went to their house on Sunday.
the bus.
holiday.
a very rainy day.

§ Vector space models capture word meanings “you shall know a word by the
company it keeps (Firth, J. R. 1957:11)”

http://methodmatters.blogspot.com/2017/11/using-word2vec-to-analyze-word.html

pasta, lamb,
cheese, mushroom

citrus, apple,
orange, lime

aromatic, nose,
scent, perfume

Language Models: Vector Models

Probabilistic Language Modeling

§ Why is this useful?
• Machine Translation:

• P(high winds tonite) > P(large winds tonite)
• Spell Correction

• The office is about fifteen minuets from my house
• P(about fifteen minutes from) > P(about fifteen minuets

from)
• Speech Recognition

• P(I saw a van) >> P(eyes awe of an)
• Text Generation: "I", "I saw", "I saw a", "I saw a van."
• + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

§ Goal: compute the probability of a sentence or sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)
§ Related task: probability of an upcoming word:

P(w5|w1,w2,w3,w4)
§ A model that computes either of these:

P(W) or P(wn|w1,w2…wn-1)
is called a language model (with probabilistic assumed).

Probabilistic Language Modeling

§ You have seen these before!

More probable.

Probabilistic Language Modeling
Remark:

It is possible to apply this technique to any sequence, e.g.,
• Letters in a word; *
• Pitches in a melody;
• Phonemes in a voice signal;
• Topics in a discourse.

• How to compute the joint probability of a sentence:

• P(I went to their house on Sunday)

• Recall the definition of conditional probabilities

• p(B|A) = P(A and B) / P(A) Rewriting: P(A and B) = P(A) * P(B|A)

• More variables:

• P(A and B and C and D) = P(A) × P(B|A) × P(C|A and B) × P(D|A and B and C)
• Etc.

Probabilistic Language Modeling

The Chain Rule applied to compute joint probability of words in sentence, say “I went
to their house on Sunday.”

P(I went to their house on Sunday.)=
P(I) × P(went|I) × P(to|I went) × P(their|I went to)

× P(house|I went to their) × P(on|I went to their house)
x P(Sunday|I went to their house on)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

1 ≤ 𝑖 ≤ 𝑛

Probabilistic Language Modeling

Could we just count and divide?

P(Sunday | I went to their house on) =

Count(I went to their house on Sunday)

Count(I went to their house on)

Probabilistic Language Modeling

Can we just count? Not realistic:

In an infinite set of sentences, the probability of any distinct sequence of words
is 0. So a data set is a small sample which hopefully represents the essential
features of the language.

But realistic data sets never have enough sample sequences, and sequences
might be very long or simply not exist in your data.

“I have been here before,” I said; I had been there before; first with Sebastian more than twenty years ago on a
cloudless day in June, when the ditches were white with fools’ parsley and meadowsweet and the air heavy with all
the scents of summer; it was a day of peculiar splendor, such as our climate affords once or twice a year, when leaf
and flower and bird and sun-lit stone and shadow seem all to proclaim the glory of God; and though I had been there
so often, in so many moods, it was to that first visit that my heart returned on this, my latest.” Evelyn
Waugh: Brideshead Revisited, first sentence.

Probabilistic Language Modeling

So, if N = 2
I went to their house on Sunday

I went
went to

to their
their house

house on
on Sunday

Terminology: An N-Gram is a sequence of N contiguous words from the data set.

unigram = 1-gram, bigram = 2-gram, trigram = 3-gram, etc.

Probabilistic Language Modeling

Solution: Use a finite memory of the last N words (cf. the Markov Property,
where N = 0)

If N = 3
I went to their house on Sunday

I went to
went to their

to their house
their house on

house on Sunday

Markov Assumption: Only consider N-1 words of left context.

Thus, for a sequence of length M,

For small N, it is reasonable to count the number of N-Grams. Typical values
are 1 ≤ 𝑁 ≤ 5. It is usual to add a beginning <s> and ending token </s> to
sentences.

Probabilistic Language Modeling

Bigram Example (N = 2)

P(<s> I went to their house on Sunday </s>) =

P(I |<s>) × P(went | I) × P(to | went) × P(their | to)

× P(house | their) × P(on | house)

x P(Sunday | on) x P(</s> | Sunday)

Note that this calculation involves
finding the number of occurrences
of an N-gram and of an (N-1)-gram
(the prefix)!

Probabilistic Language Modeling

Trigram Example (N = 3)

P(<s> I went to their house on Sunday </s>)=

P(I |<s>) × P(went | I) × P(to | went) × P(their | to)

× P(house | their) × P(on | house)

x P(Sunday | on) x P(</s> | Sunday)

Probabilistic Language Modeling

A bigram example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Probabilistic Language Modeling

Remarks:
This is almost trivial to code after you have separated your text into words and sentences.

For small N, it will be reasonably efficient. Check out the Google N-Gram viewer:

https://books.google.com/ngrams/

Probabilistic Language Modeling

Sentence generation using N-Grams

A clever feature of this model is that it can easily generate sentences.

For bigrams, after calculating the probability of all bigrams appearing in the
data.

Pick a probable* bigram <s> w1
Pick a probable bigram w1 w2
.... etc. ...
End when you generate a bigram wk </s>

* You may not want to always choose the most likely, or you will not be able to generate
many sentences!

Probabilistic Language Modeling

Textbook examples of sentence generation from Shakespeare:

Probabilistic Language Modeling

Textbook examples of sentence generation from the Wall Street Journal:

Probabilistic Language Modeling

The problem with N-Gram models, and with FF NNs in general: long-range
dependencies that are not captured by an N-gram for small N:

Many time series have periodic components that are not captured by small samples of size
N:

Probabilistic Language Modeling

The problem with N-Gram models, and with FF NNs in general: long-range
dependencies that are not captured by an N-gram for small N:

Natural language is strongly sequential, and has long-range dependencies:

I don’t think this movie is very good.

This movie, although I thought the prequel was excellent (and I was looking
forward to the next installment in the series), is not very good.

'I have been here before,' I said; I had been there before; first with Sebastian more than
twenty years ago on a cloudless day in June, when the ditches were creamy with
meadowsweet and the air heavy with all the scents of summer; it was a day of peculiar
splendour, and though I had been there so often, in so many moods, it was to that first visit
that my heart returned on this, my latest. -Brideshead Revisited, Evelyn Waugh

Probabilistic Language Modeling

The problem with feedforward NNs

So far, our representations for texts have either

• Completely ignored sequencing (BOW, TFIDF, mean of embeddings, cosine
similarity); or

• Accounted for very short

(N-Grams):

Clearly we need better methods

to deal with sequenced data!

Probabilistic Language Modeling

One (partial) solution was CNNs

Recurrent Neural Network

Recurrent Neural Network

§ Basic unit is same with one important change: the
output is fed back into the inputs:

Σ

h

x0 x1 xn xn+1

w0 w1 wn wn+1

...

Recurrent Neural Network

§ Basic unit is same with one important change: the
output is fed back into the inputs:

Σ

h

x0 x1 xn xn+1

w0 w1 wn wn+1

You will see lots of less precise
diagrams used which are
equivalent:

(Just be sure to note the direction
of the arrows, that all outputs
have the same value, and that
each input has a weight wi
attached to it!)

...

Recurrent Neural Network

In Linear Algebra:

Recurrent Neural Network

Unrolled through time:

Recurrent Neural Network

The LSTM (Long Short-Term Memory) is another, earlier design, still
very much used:

Recurrent Neural Network

A typical design uses down-stream NN networks:

RNN Review: GRUs and LSTMs for NLP

A layer with N activation units and input/feature vector of length K has the
following size:

FFNN: N*K

GRU: 3 * (N2 + N*K)

LSTM: 4 * (N2 + N*K)

Summary:
• Most designs use embeddings as squence input to the first

RNN layer
• Adding gates improves performance, but takes longer to train;
• Generally GRUs are preferred for large networks and large

data sets; LSTMs for smaller.
• “No Free Lunch Theorem”: It depends on the

application!
• Many heuristics (e.g., picking certain

initializations for weight instead of random)
seem to help in many cases.

Recurrent Neural Network

There are many ways to configure an RNN. The
simplest is a sequence-to-sequence RNN:

Recurrent Neural Network

Example: Part of speech tagging

Recurrent Neural Network

You can also take a single input and recursively
process it using a vector-to-sequence RNN:

Example: Input
is an image and
the output is a
text label for
that image.

Recurrent Neural Network

In a classification task, only a single output is
needed, and by ignoring all but the last output, you
have a sequence-to-vector RNN:

Example: Input
is a movie
review and
output is
classification
into good, bad,
neutral.

Recurrent Neural Network

Recurrent layers can feed into a feedforward network....

Recurrent Neural Network

And you can stack RNNs....

Recurrent Neural Network

Does this solve all our problems? Unfortunately not, due to
the vanishing gradients problem: unrolling through time
makes the network very large and preserving information
(through weights) over long distances is a problem:

Long-term Dependencies

§ RNN might be able to connect previous
information to the present task
§ When the gap between the relevant information and

the place it is needed is small
§ E.g., predict the last word in ”the clouds are in the

XXX”

Long-term Dependencies

§ RNN might be able to connect previous
information to the present task
§ But there are cases where we need more context – it is

possible that the gap between the relevant information
and the point where it’s needed to become very large

gap

Long-term Dependencies

§ RNN might be able to connect previous
information to the present task
§ As the gap grows, RNNs become unable to learn to

connect the information
§ E.g., “I grew up in France. I learn to cycle when I was

very young but only learned to swim as an adult. I also
love to cook and bake. I can make a mean cake. Since
I grew up there, I also speak fluent XXX”

Recurrent Neural Network

A solution to the vanishing gradients problem is to build a
sequence-to-sequence RNN in two stages: By combining
a sequence-to-vector and a vector-to-sequence RNN, you
have a sequence-to-sequence RNN, but with the
advantage that the entire sequence is processed into some
internal representation (a vector) and then processed into
an output sequence. This is a typical organization for a
language translator....

Review: GRUs and LSTMs for NLP

Gated Recurrence Unit Networks add a recurrent activation path which acts as a
memory; the gate determines how much of the information is “remembered” at
each step of the sequence.

Long Short Term Memory Layers use a separate “carry” path for the memory, 4
gates, and calculate the activation from the memory and the current inputs:

RNN Review: GRUs and LSTMs for NLP

The universal method in the literature is to show these networks “unrolled through
time,”
but keep in mind that these are illustrations only:

RNN Review: GRUs and LSTMs for NLP

How are Networks with Recurrent
Layers Designed?

Deep Networks

Generally, networks for
sequence data such
as text have recurrent
layers processing the
sequence, and feed
forward layers
interpreting and
producing output such
as a classification.

GRU

GRU

GRU

FFNN

FFNN

FFNN

FFNN

How are Networks
with Recurrent

Layers Designed?

Unrolling a deep RNN
network reveals a very
complicated design!

How are Networks
with Recurrent

Layers Designed?

Unrolling a deep RNN
network reveals a very
complicated design!

How are Networks
with Recurrent

Layers Designed?

Unrolling a deep RNN
network reveals a very
complicated design!

How are Networks
with Recurrent

Layers Designed?
MANY different
designs have been
proposed, with
advantages and
disadvantages.

Idea 1: Tree-
structured network
which combines lower
levels using some
aggregating function
(weighted) sum,
perhaps controlled by
a gate.

How are Networks
with Recurrent

Layers Designed?
MANY different designs have
been proposed, with
advantages and
disadvantages.

Idea 2: Apply 1D
Convolutions to the RNN
layers.

LSTM

LSTM

1D
CNN

FFNN

FFNN

FFNN

1D
CNN

How are Networks
with Recurrent

Layers Designed?
MANY different designs have
been proposed, with
advantages and
disadvantages.

Idea 3: Bidirectional RNN:
Combine result of running
two RNNs on forward and
reverse sequence
simultaneously. Results are
fed to the next layer, usually
by concatenation.

Training RNNs with Sequence Data:
Classification

NOTE: From now
on, we’ll show
every RNN
unrolled through
time, though you
should always
remember that
there is a for loop
controlling the
whole process.)

Example 1: Sentnece classification

Easy! Just use the last output and proceed as usual!

Training RNNs with Sequence Data: POS
Tagging

NOTE: From now
on, we’ll show
every RNN
unrolled through
time, though you
should always
remember that
there is a for loop
controlling the
whole process.)

Example 2: Part-of-Speech Tagging

In POS Tagging, the input is a sentence, and the
output is a sequence of multinomial classifications into
parts of speech:

For each word in the sequence, the estimated tag is compared with the
actual tag label, and the log loss is added across the whole sequence; to
prevent longer sequences from having lower probabilities, we take the
average log loss per token:

Log loss: 0.01 + 0.003 + 0.023 + 0.005 + 0.04
= 0.081 / 5 = 0.0162

Training RNNs with Sequence Data: POS Tagging

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

Recall: A Language Model assigns a probability to each sequence of words.
To teach an RNN a language model, we can add the log loss of each word
generated compared with an N-Gram model (there are more sophisticated
approaches).

Log loss: 0.021 + 0.0034 + 0.0023 +

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

A sentence generator using the trained RNN can generate sentences by picking
the most likely next word in each step, until it generates the end-of-sentence
token </s>:

Training RNNs with Sequence Data: Generating
Sentence using a Language Model from a Context.

An important variation of the autoregressive generator is to give the RNN a
context at the beginning; here we give the generator the start-of-sentence token
<s> (which says that the next word is one that must follow <s>, duh...).

<s>

Training RNNs with Sequence Data: Generating
Sentence using a Language Model from a Context.

But this context could be anything! For example, we could give it an integer:

-1 Negative movie review
0 Neutral movie review
1 Positive movie review -1

Worst movie I’ve ever
seen !

0

It was ok
nothing great .

Training RNNs with Sequence Data: Generating
Sentence using a Language Model from a Context.

Or it could be an author to imitate:

Shakes
peare

How now sir hark
ye well

Hom
er

The hollow ships of the
Achaeans

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

One Problem: The RNN makes local decisions about the
most likely next word. However, a series of such local
decisions will not necessarily find the globally most likely
sentence (cf. gradient descent, which has the same
problem).

The usual optimization is Beam Search:

1. Pick the “width of the beam” N (at each iteration, we will
store the N most likely sequences of words);

2. Generate a list of the N most likely words to start a
sentence, and concatenate them with <s>;

3. At each iteration, examine ALL possible next words in the
sequence; toss all but the N most likely sequences;

4. Repeat until </s> is generated. Return the most likely
sentence.

Note:
sentences
might be
different
lengths;
stop when
sequence
ends in
</s>.

Training RNNs with Sequence Data: Generating
Sentence using a Language Model

Example of Beam Search with N = 2 using letters
instead of words:

Result:
AED

Punchline: Beam search is not guaranteed to find the optimal sequence,
but as a heuristic it works very well. There is an obvious
efficiency/performance tradeoff. Common values of N are 10, 100, 1000.

